Home
Class 12
MATHS
The value of the integral int(0)^(4)(x^(...

The value of the integral `int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{4} \frac{x^2}{x^2 - 4x + 8} \, dx, \] we will use the property of definite integrals, which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Here, \( a = 0 \) and \( b = 4 \). Thus, \( a + b = 4 \), and we can rewrite the integral as follows: \[ I = \int_{0}^{4} \frac{(4 - x)^2}{(4 - x)^2 - 4(4 - x) + 8} \, dx. \] ### Step 2: Simplify the expression Now, we simplify \( (4 - x)^2 \) and the denominator: 1. **Numerator**: \[ (4 - x)^2 = 16 - 8x + x^2. \] 2. **Denominator**: \[ (4 - x)^2 - 4(4 - x) + 8 = (16 - 8x + x^2) - (16 - 4x) + 8 = x^2 - 4x + 8. \] Thus, we have: \[ I = \int_{0}^{4} \frac{16 - 8x + x^2}{x^2 - 4x + 8} \, dx. \] ### Step 3: Combine the two integrals Now, we can add the original integral and the transformed integral: \[ 2I = \int_{0}^{4} \left( \frac{x^2}{x^2 - 4x + 8} + \frac{16 - 8x + x^2}{x^2 - 4x + 8} \right) \, dx. \] ### Step 4: Combine the numerators Combining the numerators gives: \[ 2I = \int_{0}^{4} \frac{2x^2 - 8x + 16}{x^2 - 4x + 8} \, dx. \] ### Step 5: Factor out the common terms Factoring out a 2 from the numerator: \[ 2I = 2 \int_{0}^{4} \frac{x^2 - 4x + 8}{x^2 - 4x + 8} \, dx = 2 \int_{0}^{4} 1 \, dx. \] ### Step 6: Evaluate the integral Now, evaluate the integral: \[ 2I = 2 \left[ x \right]_{0}^{4} = 2(4 - 0) = 8. \] ### Step 7: Solve for \( I \) Thus, we have: \[ I = \frac{8}{2} = 4. \] ### Final Answer The value of the integral is \[ \boxed{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of integral int_(2)^(4)(dx)/(x) is :-

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx is