Home
Class 12
MATHS
Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)...

Let `A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4)`. If `B=lambdaA, AA lambda in R`, then the value of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the matrix powers of \( A \) and then sum them up to find \( B \). Let's go through the steps systematically. ### Step 1: Define the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 3 = 1 + 3 = 4 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 3 = 1 + 3 = 4 \) - Second row, first column: \( 3 \cdot 1 + 3 \cdot 3 = 3 + 9 = 12 \) - Second row, second column: \( 3 \cdot 1 + 3 \cdot 3 = 3 + 9 = 12 \) Thus, \[ A^2 = \begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix} \] ### Step 3: Express \( A^2 \) in terms of \( A \) Notice that: \[ A^2 = 4A \] ### Step 4: Calculate \( A^3 \) Now we calculate \( A^3 \) using \( A^2 \): \[ A^3 = A^2 \times A = (4A) \times A = 4A^2 \] Substituting \( A^2 \): \[ A^3 = 4(4A) = 16A \] ### Step 5: Calculate \( A^4 \) Next, we calculate \( A^4 \): \[ A^4 = A^3 \times A = (16A) \times A = 16A^2 \] Substituting \( A^2 \): \[ A^4 = 16(4A) = 64A \] ### Step 6: Calculate \( B \) Now we can calculate \( B \): \[ B = A + A^2 + A^3 + A^4 \] Substituting the values we found: \[ B = A + 4A + 16A + 64A = (1 + 4 + 16 + 64)A = 85A \] ### Step 7: Relate \( B \) to \( \lambda A \) We know from the problem statement that: \[ B = \lambda A \] From our calculation, we have: \[ B = 85A \] Thus, by comparing: \[ \lambda A = 85A \] This implies: \[ \lambda = 85 \] ### Final Answer The value of \( \lambda \) is: \[ \lambda = 85 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

(3+omega + 3 omega^(2))^(4)= lambda omega , then value of lambda is :

The area between the curves x=4y-y^(2) and 0 is lambda square units, then the value of 3lambda is equal to

if A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O, then lambda is equal to

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

If A=[[1, 1], [1, 1]] satisfies A^4=lambdaA , then write the value of lambda

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

Three vectors a(|a|ne0), b and c are such that atimesb=3atimesc , also |a|=|b|=1 and |c|=(1)/(3) . If the angle between b and c is 60^(@) and |b-3x|=lambda|a| , then the value of lambda is