Home
Class 12
MATHS
Show that tan^-1((-1)/sqrt3)+sec^-1(-2)-...

Show that `tan^-1((-1)/sqrt3)+sec^-1(-2)-sin^-1(1/2)=pi/3`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Find tan^(-1) sqrt3 -sec^(-1)(-2)

Show that tan^-1(x/(sqrt(a^2-x^2)))=sin^-1(x/a)

Prove that tan^-1(1/8)+2tan^-1(1/3)+tan^-1(1/57)=pi/4

Show that sin^-1(8/17)+sin^-1(3/5)=tan^-1(77/36)

Prove that 2tan^-1(1/3)+tan^-1(1/7)=pi/4 .

Show that tan^-1frac(1)(5)+tan^-1frac(1)(7)+tan^-1frac(1)(3)+tan^-1frac(1)(8)=pi/4

Using the above result prove that tan^-1(frac(1)(2))+tan^-1(frac(1)(3))=pi/4

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

Find the value of tan^(-1)(frac(1)(sqrt3))+cos^(-1)(-frac(sqrt3)(2))+sin^(-1)(frac(1)(2))

Prove that tan ^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))=pi/4+1/2 cos ^(-1) x^2