Home
Class 12
MATHS
Prove that tan^(-1)(2/11) + tan^(-1)(7/2...

Prove that `tan^(-1)(2/11) + tan^(-1)(7/24) = tan^(-1)(1/2)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan ^(-1) (1/7)+tan ^(-1)( (1)/(13))=tan ^(-1)( 2/9)

Prove that tan^-1 (1/2)+tan^-1(2/11)=tan^-1(3/4)

Prove that 2tan^-1(1/3)+tan^-1(1/7)=pi/4 .

Prove that tan ^(-1) x+tan ^(-1) ((2 x)/(1-x^2))=tan ^(-1)((3 x-x^3)/(1-3 x^2)),|x|lt1/sqrt3

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Prove that tan^-1(1/2)-tan^-1(2/5)=tan^-1(1/12)

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

sum_(r=1)^(n) tan^(-1)(2^(r-1)/(1+2^(2r-1))) is equal to a) tan^(-1)(2^n) b) tan^(-1)(2)^n-pi/4 c) tan^(-1)(2^(n+1)) d) tan^(-1)(2^(n+1))-pi/4