Home
Class 12
MATHS
Prove that sin^-1(2xsqrt(1-x^2))=2sin^-1...

Prove that `sin^-1(2xsqrt(1-x^2))=2sin^-1x`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

Within the domain of definitions prove that sin^-1(-x)=-sin^-1x

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

The derivative of sin^(-1) (2xsqrt(1-x^(2))) with respect to sin^(-1)(3x - 4x^(3)) is

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Show that f(x)=2sin^-1x

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Find f'(x) .

Differentiate sin^(-1) ( 2 x sqrt( 1 - x^(2))) with respect to x if (1)/( sqrt(2)) lt x lt 1

Prove that 3 sin ^(-1) x = sin^(-1) (3x - 4x^3), x in [-1/2,1/2]

If y=sin(m sin^-1x) . Show that sqrt(1-x^2)dy/dx=mcos(msin^-1x)

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y^2=(sin^(-1)x)^2