Home
Class 12
MATHS
Write the simplest form of sin^-1[xsqrt(...

Write the simplest form of `sin^-1[xsqrt(1-x)-sqrtx.sqrt(1-x^2)]`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx of the following sin^(-1)[xsqrt(1-x)+sqrtxsqrt(1-x^2)]

Write the following functions in the simplest form : tan^(-1)((sqrt(1+x^2)-1)/x), x ne 0

Write the following functions in the simplest form : tan^(-1)(1/sqrt(x^2 -1)), |x| gt 1

Write the following functions in the simplest form : tan^(-1) (x/sqrt(a^2-x^2)), |x| lt a

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

Find dy/dx of y=sin^-1 2xsqrt(1-x^2) (-1)/sqrt2 < x <1/sqrt2

Write the following functions in the simplest form : tan^(-1) sqrt((1-cos x)/(1+cos x)), 0 lt x lt pi

Given x^2=cos2theta Write tan^-1((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) in simplest form.

If y=sin^-1((sqrt(1+x)+sqrt(1-x))/2) Find dy/dx .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0