Home
Class 12
MATHS
Consider the function f(x)=sin^(-1)(2xsq...

Consider the function `f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2`
Show that `f(x)=2sin^-1x`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=sin^(-1)(2xsqrt(1-x^2)),(-1)/sqrt2lexle1/sqrt2 Find f'(x) .

Find dy/dx of y=sin^-1 2xsqrt(1-x^2) (-1)/sqrt2 < x <1/sqrt2

Find the domain of the function f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

The domain of the function f(x)=sin^(-1)((x+5)/(2)) is

Integrate the following functions: sin^-1x/(sqrt(1-x^2)

If f(x)=sin^(-1){sqrt3/2x-1/2sqrt(1-x^2)},-1/2lexle1 , then f(x) is equal to

Evaluate sin^(-1)((x+sqrt(1-x^2))/(sqrt2)) , where -1/sqrt2ltxlt1/sqrt2

Prove that sin^-1(2xsqrt(1-x^2))=2sin^-1x

Find the domain of the function f(x) = sin^(-1)(log_(2)x)

Find the domain of f(x) = sin^(-1)(x^2/2)