Home
Class 12
MATHS
Prove that tan^-1(1/8)+2tan^-1(1/3)+tan^...

Prove that `tan^-1(1/8)+2tan^-1(1/3)+tan^-1(1/57)=pi/4`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Show that tan^-1(1/8)+tan^-1(1/57)=tan^-1(1/7)

Prove that tan^-1(1/2)-tan^-1(2/5)=tan^-1(1/12)

Prove that tan^-1 (1/2)+tan^-1(2/11)=tan^-1(3/4)

Prove that 2tan^-1(1/3)+tan^-1(1/7)=pi/4 .

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan^(-1)(2/11) + tan^(-1)(7/24) = tan^(-1)(1/2)

Prove that tan ^(-1) (1/7)+tan ^(-1)( (1)/(13))=tan ^(-1)( 2/9)

Using the above result prove that tan^-1(frac(1)(2))+tan^-1(frac(1)(3))=pi/4

Prove 2tan^-1frac(1)(2)+tan^-1frac(1)(7)=tan^-1frac(31)(17)