Home
Class 12
MATHS
Prove that tan^-1(1/2)-tan^-1(2/5)=tan^-...

Prove that `tan^-1(1/2)-tan^-1(2/5)=tan^-1(1/12)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|122 Videos
  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^-1 (1/2)+tan^-1(2/11)=tan^-1(3/4)

Show that tan^-1(1/8)+tan^-1(1/57)=tan^-1(1/7)

Prove that tan^-1(1/8)+2tan^-1(1/3)+tan^-1(1/57)=pi/4

Prove that 2tan^-1(1/3)+tan^-1(1/7)=pi/4 .

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that tan^(-1)(2/11) + tan^(-1)(7/24) = tan^(-1)(1/2)

Prove that tan ^(-1) (1/7)+tan ^(-1)( (1)/(13))=tan ^(-1)( 2/9)

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan3thetatantheta .

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .