Home
Class 12
MATHS
If A=[(-1),(2),(3)] and B=[-2 -1 -4] Fin...

If `A=[(-1),(2),(3)]` and `B=[-2 -1 -4]` Find `A^T` and `B^T`.

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos
  • PROBABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

If A=[(-1),(2),(3)] and B=[-2 -1 -4] Verify that (AB)^T=B^T.A^T

If A= [(2,-1),(3,1)] and B = [(1,4),(7,2)] ,find 3A - 2B.

A=[[-1,0,2],[4,0,-3]] , B=[[0,2],[-1,3],[0,4]] Find A^T , B^T

Of the matrices A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] Find AB , B^T , (AB)^T

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Find A^T and B^T

If A=[(1,-1),(2,-1)] , B=[(a,1),(b,-1)] and (A+B)^2=A^2 +B^2 .Find a and b.

If A=[(1,2),(3,4),(5,6)] and B = [(-3,-2),(1,-5),(4,3)] , then find D = [(p,q),(r,s),(t,u)] such that A + B - D = 0.

Let A=[[1,2,-3],[2,1,-1]] B=[[2,3],[5,4],[1,6]] Find A^T , B^T & (AB)^T

Consider the matrix A = [(1,2,1),(0,1,2),(-1,1,4)] Find A A^T and hence prove that A A^T is symmetric.

Consider A=[(4,1),(5,3)] . Find A^-1 and A^T

BODY BOOKS PUBLICATION-MATRICES-EXERCISE
  1. If A=[(1,-1),(2,-1)],B=[(a,1),(b,-1)] and (A+B)^2=A^2 +B^2 .Find a and...

    Text Solution

    |

  2. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Find out the product AB.

    Text Solution

    |

  3. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Find A^T and B^T.

    Text Solution

    |

  4. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Verify that (AB)^T=B^T.A^T

    Text Solution

    |

  5. Consider the matrices A=[1, x ,1],B=[(1,3,2),(2,5,1),(15,3,2)],C=[(1),...

    Text Solution

    |

  6. Consider A=[[1,x,1]],B=[[1,3,2,],[2,5,1,],[15,3,2,]],C=[(1),(2),(x)...

    Text Solution

    |

  7. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  8. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  9. Let A is a third order square matrix given by a(ij)={(-i+2j, i=j),(ixx...

    Text Solution

    |

  10. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  11. Find the inverse of matrices [(1,-1),(2,3)]

    Text Solution

    |

  12. if A=[[3, -4],[ 1, (-1)]], then prove that A^n=[[1+2 n, -4 n ],[n...

    Text Solution

    |

  13. For what values of x:[[1, 2, 1]] [[1, 2, 0],[ 2, 0, 1],[ 1, 0...

    Text Solution

    |

  14. Using elementary row transformations, find the inverse of the matrix [...

    Text Solution

    |

  15. Let A=[(0,-tanx//2),(tanx//2,0)] Find out I+A and I-A.

    Text Solution

    |

  16. If A=[[0, -tan (alpha/2)], [ tan (alpha/2), 0]] and I is the identi...

    Text Solution

    |

  17. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  18. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  19. Let A is a third order square matrix given by a(ij)={(-i+2j, i=j),(ixx...

    Text Solution

    |

  20. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |