Home
Class 12
MATHS
If A=[(-1),(2),(3)] and B=[-2 -1 -4] Ver...

If `A=[(-1),(2),(3)]` and `B=[-2 -1 -4]` Verify that `(AB)^T=B^T.A^T`

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos
  • PROBABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

If A=[(-1),(2),(3)] and B=[-2 -1 -4] Find A^T and B^T .

A=[[-1,0,2],[4,0,-3]] , B=[[0,2],[-1,3],[0,4]] Verify (AB)^T=B^TA^T

Let A=[[1,2,-3],[2,1,-1]] B=[[2,3],[5,4],[1,6]] Verify that (AB)^T=B^TA^T

For the matrices A=[[-1, 2],[ 3, 4]] and B=[[2, 5],[ 3, 6]] , verify that (AB)^(-1)=B^(-1) A^-1?

If A^T=[[3,4],[-1,2],[0,1]] and B=[[-1,2,1],[1,2,3]] then verify that (A-B)^T=A^T-B^T

If A=[[2, 3],[ 1, -4]] and B=[[1, -2],[ -1, 3]] , then verify that (A B)^(-1)=B^(-1) A^(-1)

Let A = [[3,7],[2,5]] and B= [[6,8],[7,9]] Verify that (AB)^(-1)=B^(-1)A^(-1)

If A= [[-1,2,3],[5,7,9],[-2,1,1]] and B= [[-4,1,-5],[1,2,0],[-1,3,1]] then verify that (A+B)^T=A^T +B^T

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Show that (AB)^T=B^TA^T

If A^'=[[3, 4],[ -1, 2],[ 0, 1]] and B=[[-1, 2 , 1],[ 1,2, 3]] then verify that 1) (A+B)^'=A^'+B^' 2) (A-B)^'=A^'-B^'

BODY BOOKS PUBLICATION-MATRICES-EXERCISE
  1. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Find out the product AB.

    Text Solution

    |

  2. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Find A^T and B^T.

    Text Solution

    |

  3. If A=[(-1),(2),(3)] and B=[-2 -1 -4] Verify that (AB)^T=B^T.A^T

    Text Solution

    |

  4. Consider the matrices A=[1, x ,1],B=[(1,3,2),(2,5,1),(15,3,2)],C=[(1),...

    Text Solution

    |

  5. Consider A=[[1,x,1]],B=[[1,3,2,],[2,5,1,],[15,3,2,]],C=[(1),(2),(x)...

    Text Solution

    |

  6. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  7. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  8. Let A is a third order square matrix given by a(ij)={(-i+2j, i=j),(ixx...

    Text Solution

    |

  9. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  10. Find the inverse of matrices [(1,-1),(2,3)]

    Text Solution

    |

  11. if A=[[3, -4],[ 1, (-1)]], then prove that A^n=[[1+2 n, -4 n ],[n...

    Text Solution

    |

  12. For what values of x:[[1, 2, 1]] [[1, 2, 0],[ 2, 0, 1],[ 1, 0...

    Text Solution

    |

  13. Using elementary row transformations, find the inverse of the matrix [...

    Text Solution

    |

  14. Let A=[(0,-tanx//2),(tanx//2,0)] Find out I+A and I-A.

    Text Solution

    |

  15. If A=[[0, -tan (alpha/2)], [ tan (alpha/2), 0]] and I is the identi...

    Text Solution

    |

  16. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  17. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  18. Let A is a third order square matrix given by a(ij)={(-i+2j, i=j),(ixx...

    Text Solution

    |

  19. A is a third order square matrix and a(ij)={(-i,+,2j,if,i,=,j),(i,x...

    Text Solution

    |

  20. If [(2,-1),(1,0),(-3,4)] A=[(-1,-8,-10),(1,-2,-5),(9,22,15)] Find the ...

    Text Solution

    |