Home
Class 12
MATHS
Let A=[a(ij)](2times3) where a(ij=i+j. c...

Let `A=[a_(ij)]_(2times3)` where `a_(ij=i+j`. construct A.

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos
  • PROBABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

Consider a 2xx2 matrix A=[a_(ij)] with a_(ij)=2^i+j Construct A.

If A=[a_(ij)]_(2xx2) where a_(ij)=i+j , then A is equal to a) [(1,1),(2,2)] b) [(1,2),(1,2)] c) [(1,2),(3,4)] d) [(2,3),(3,4)]

Consider a 2xx2 matrix A=[a_(ij)] , where a_(ij)=(i+j)^2/2 . Show that A is a symmetric.

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j) Show that the matrix A is a skew symmetrics.

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A

Consider a 2xx2 matrix A=[a_(ij)] , where a_(ij)=(i+j)^2/2 . Write the transpose of A .

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Find A+A^T

Let A and B be two 3x2 matrices, where a_(i j) = i + j and b_(i j) = i - j Construct A and B

Consider a 2xx2 matrix A=[a_(ij)] , where A_(ij)=(i+2j)^2/2 Write A

Consider a 2xx2 matrix A=[a_(ij)] , where a_(ij)=(i+2j)^2/2 Find A+A^T

BODY BOOKS PUBLICATION-MATRICES-EXERCISE
  1. Write two non-zero matrices A and B for which AB=0.

    Text Solution

    |

  2. Express A=[(1,-1),(2,3)] as the sum of a symmetric matrix and a skew s...

    Text Solution

    |

  3. Let A=[a(ij)](2times3) where a(ij=i+j. construct A.

    Text Solution

    |

  4. For any square matrix A,prove that A+A' is symmetric.

    Text Solution

    |

  5. If A is a skew symmetric matrix of order 3. Then prove that it's deter...

    Text Solution

    |

  6. Given abs [[2+x,3,4],[1,-1,2],[x,1,5]] is a singular matrix. Find the ...

    Text Solution

    |

  7. Given A and B are square matrices of order 2 such that absA=-1, absB=3...

    Text Solution

    |

  8. For the symmetric matrix A=[(2,x,4),(5,3,8),(4,y,9)].Find the value of...

    Text Solution

    |

  9. If A=[(3,1),(-1,2)] . Show that A^2-5A+7I=0 Hence find A^4 and A^-1 ...

    Text Solution

    |

  10. Using elementary row operations, find the inverse of the matrix [[1,...

    Text Solution

    |

  11. Find x and y if x[[2],[3]]+y[[-1],[1]]=[[10],[5]]

    Text Solution

    |

  12. Express the matrix [[2,-2,-4],[-1,3,4],[1,-2,-3]] as the sum of a ...

    Text Solution

    |

  13. The value of k such that matrix [[1,k],[-k,1]] is symmetric if

    Text Solution

    |

  14. If A=[[costheta,sintheta],[-sintheta,costheta]] then prove that A^2...

    Text Solution

    |

  15. If A=[[1,3],[4,1]] , then find abs(3A^T)

    Text Solution

    |

  16. If A=[[0,1],[0,0]] ,B=[[1,0],[0,0]], then BA=

    Text Solution

    |

  17. Write A=[[3,5],[1,-1]] as the sum of a symmetric and a skew symmetric ...

    Text Solution

    |

  18. Find the inverse of A=[[2,-6],[1,-2]]

    Text Solution

    |

  19. Choose the correct statement related to the matrices A=[[1,0],[0,1]]...

    Text Solution

    |

  20. IfM=[[7,5],[2,3]],then verify the equation M^2-10M+11I2=0

    Text Solution

    |