Home
Class 12
MATHS
Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,...

Let `A=[(2,4),(1,-3)]` and `B=[(1,-1,5),(0,2,6)]` Find AB.

Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BODY BOOKS PUBLICATION|Exercise EXERCISE|2 Videos
  • PROBABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] Is BA defined? Justify your answer.

Of the matrices A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] Find AB , B^T , (AB)^T

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Find AB

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Find A^T and B^T

Let A = [(1,2),(3,-5)] and B = [(1,0),(0,2)] and X be a matrix such that A = BX. Then find X.

Let A+B = [(4,1,4),(1,4,4)] and B = [ (1,0,-2),(-1,3,0)] then A =

If A=[(1,2),(3,4),(5,6)] and B = [(-3,-2),(1,-5),(4,3)] , then find D = [(p,q),(r,s),(t,u)] such that A + B - D = 0.

Let A=[[1,2,-3],[2,1,-1]] B=[[2,3],[5,4],[1,6]] Find AB .

Let A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] Show that (AB)^T=B^TA^T

Let A=[[3,6,5],[6,7,8]] and C=[[1,2,-3],[4,5,6]] Find 2A

BODY BOOKS PUBLICATION-MATRICES-EXERCISE
  1. Write A=[[3,5],[1,-1]] as the sum of a symmetric and a skew symmetric ...

    Text Solution

    |

  2. Find the inverse of A=[[2,-6],[1,-2]]

    Text Solution

    |

  3. Choose the correct statement related to the matrices A=[[1,0],[0,1]]...

    Text Solution

    |

  4. IfM=[[7,5],[2,3]],then verify the equation M^2-10M+11I2=0

    Text Solution

    |

  5. Consider the matrices A=[[1,-2],[-1,3]] and B=[[a,b],[c,d]] If AB=...

    Text Solution

    |

  6. Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] Find AB.

    Text Solution

    |

  7. Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)]Is BA defined? Justify yo...

    Text Solution

    |

  8. If A=[[3,1],[-1,2]] then Find A^2

    Text Solution

    |

  9. If A=[[3,1],[-1,2]] then Hence show that A^2-5A+7I=0

    Text Solution

    |

  10. If A is a square matrix such that A^2=A, then (I+A)^2-3A is equal to ...

    Text Solution

    |

  11. Find A^2-5A+6I if A=[(2,5,8),(6,0,5),(0,-2,0)]

    Text Solution

    |

  12. Consider the matrices A=[(2,1,3),(2,3,1),(1,1,1)] and B=[(-1,2,3),(-2,...

    Text Solution

    |

  13. Consider the matrix A=[[2,1,3],[2,3,1],[1,1,1]] B=[[-1,2,3],[-2,3,1]...

    Text Solution

    |

  14. Let A=[(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] be 3xx...

    Text Solution

    |

  15. Let A=[(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] be 3xx...

    Text Solution

    |

  16. Let A=[[3,1],[-1,2]] Show that A^2-5A+7I=0

    Text Solution

    |

  17. If A and B are symmetric matrices, prove that A B-B A is a skew symmet...

    Text Solution

    |

  18. Find a 2xx2 matrix A where a(ij)=i+j

    Text Solution

    |

  19. If [(1,2),(3,4)][(3,1),(2,5)]=[(7,11),(k ,23)], then find the value of...

    Text Solution

    |

  20. Find the inverse of the following matrix using elementary operations A...

    Text Solution

    |