Home
Class 12
MATHS
Using properties of determinants, show...

Using properties of determinants,
show that
`abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|148 Videos
  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos

Similar Questions

Explore conceptually related problems

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

Show that abs [[1,a,bc],[1,b,ac],[1,c,ab]]=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],[b,c,0]|=0

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3

Using properties of determinants, prove that |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

BODY BOOKS PUBLICATION-DETERMINANTS-EXERCISE
  1. Show that abs[[a+b,b+c,c+a],[b+c,c+a,a+b],[c+a,a+b,b+c]]=2abs[[a,b,c],...

    Text Solution

    |

  2. The value of the determinant |(sin10,-cos10),(sin50,cos50)| is a)-1 b)...

    Text Solution

    |

  3. Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2...

    Text Solution

    |

  4. Choose the correct answer from the bracket.The value of the determin...

    Text Solution

    |

  5. Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

    Text Solution

    |

  6. Choose the correct answer from the bracket.Consider a sqare matrix o...

    Text Solution

    |

  7. Verify A(adjA)=(adjA)A=abs[A]I for the matrix A=[[5,-2],[3,-2]]that,...

    Text Solution

    |

  8. Choose the correct answer from the bracket. If A=[(cosx,sinx),(-sinx,c...

    Text Solution

    |

  9. Find the inverse of the following A=[[1,-1,2],[0,2,-3],[3,-2,4]]

    Text Solution

    |

  10. If A=[[2,3],[1,-2]] and A^-1=kA,then the value of 'k' is

    Text Solution

    |

  11. If A=[[1,-1,1],[2,-1,0],[1,0,0]], Find A^2

    Text Solution

    |

  12. If A=[[1,-1,1],[2,-1,0],[1,0,0]], Show that A^2=A^-1

    Text Solution

    |

  13. Choose the correct answer. If each element of a third order square mat...

    Text Solution

    |

  14. Consider the matrix A=[(-8,5),(2,4)] Show that 'A' satisfies the equat...

    Text Solution

    |

  15. Consider the matrix A=[(-8,5),(2,4)] Hence find A^-1.

    Text Solution

    |

  16. If A and B are matrices of order 3 such that abs[A]=-1,abs[B]=3,then...

    Text Solution

    |

  17. If A=[(1,tanx),(-tanx,1)], Show that, A^TA^-1=[(cos2x,-sin2x),(sin2x,c...

    Text Solution

    |

  18. If A=[[1,1,5],[0,1,3],[0,-1,-2]] what is the value of abs[3A]?

    Text Solution

    |

  19. Find the equation of the line joining the points(1,2) and (-3,-2) us...

    Text Solution

    |

  20. Find the values of x in which abs[[3,x],[x,1]]=abs[[3,2],[4,1]]

    Text Solution

    |