Home
Class 12
MATHS
Using properties of determinants prove ...

Using properties of determinants prove the
following.
`abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    BODY BOOKS PUBLICATION|Exercise EXERCISE|148 Videos
  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos

Similar Questions

Explore conceptually related problems

Prove that abs[[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=(a+b+c)^3

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

Without expanding the determinant prove the following. |[a-b,b-c,c-a],[b-c,c-a,a-b],[c-a,a-b,b-c]|=0

By using properties of determinants, prove that |[0,a ,-b],[-a,0,-c],[b,c,0]|=0

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using properties of determinants, prove that |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]| = 3(a+b+c)(ab+bc+ca)

BODY BOOKS PUBLICATION-DETERMINANTS-EXERCISE
  1. If Delta=[(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)] Perform R1rarrR1+...

    Text Solution

    |

  2. If Delta=[(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)]Perform R1rarrR1+R...

    Text Solution

    |

  3. Using properties of determinants prove the following. abs[[a-b-c,...

    Text Solution

    |

  4. Given Delta=[(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c)] Express given ...

    Text Solution

    |

  5. Show that abs[[a+b,b+c,c+a],[b+c,c+a,a+b],[c+a,a+b,b+c]]=2abs[[a,b,c],...

    Text Solution

    |

  6. Find the equation of line joining (1,2) and (3,6) using determinants.

    Text Solution

    |

  7. Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is...

    Text Solution

    |

  8. Prove that |[x,sintheta, costheta],[-sintheta,-x,1],[costheta,1,x]| is...

    Text Solution

    |

  9. using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],...

    Text Solution

    |

  10. If A=[[2,-3,5],[3,2,-4],[1,1,-2]] Find A^-1

    Text Solution

    |

  11. If A=[[2,-3,5],[3,2,-4],[1,1,-2]] Using it solve the system of equat...

    Text Solution

    |

  12. prove that abs[[a,b,c],[a+2x,b+2y,c+2z],[x,y,z]]=0

    Text Solution

    |

  13. if A=[[1,-1,2],[0,2,-3],[3,-2,4]] B=[[-2,0,1],[9,2,-3],[6,1,-2]] Prov...

    Text Solution

    |

  14. if A=[[1,-1,2],[0,2,-3],[3,-2,4]] B=[[-2,0,1],[9,2,-3],[6,1,-2]] ...

    Text Solution

    |

  15. If A=[[a,1],[1,0]] is such that A^2=I then a equals

    Text Solution

    |

  16. Solve the system of equations x-y+z=4,2x+y-3z=0,x+y+z=2 Using matr...

    Text Solution

    |

  17. The value of abs((x,x-1) , (x+1,x):} is a)1 b)x c)x^2d)0

    Text Solution

    |

  18. Using properties of determinants prove the following. abs[[1,x,x^2...

    Text Solution

    |

  19. Prove that |(1,x,x^3),(1,y,y^3),(1,z,z^3)|=(x+y+z)(x-y)(y-z)(z-y).

    Text Solution

    |

  20. Prove that abs[[1!,2!,3!],[2!,3!,4!],[3!,4!,5!]]=4!

    Text Solution

    |