Home
Class 12
MATHS
Let z=sinx-cosx. Find dz/dx....

Let `z=sinx-cosx`. Find `dz/dx`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

Let y=x^sinx+(sinx)^x . Find dy/dx

Let u=sin^2x&v=e^(cosx) .Find du/dx and dv/dx

Let z=sinx-cosx. Compute int(cosx+sinx)/sqrt(sin 2x)

Let z=sinx-cosx. Show that 1-z^2=sin2x .

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

u=(sinx)^(tanx) , v=(cosx)^(secx) . Find (du)/dx and (dv)/dx .

Using properties evaluate the following definite integrals, evaluate the following: int_0^(pi/2) (sinx-cosx)/(1+sinx cosx) dx

If f(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Find f(-x)

Given that int e^x[f(x)+f^'(x)] dx = e^x f(x)+c . By writing int e^x(sinx+cosx)dx = int e^x sinxdx+ int e^x cosx dx and applying integration by parts in the first integral, evaluate int e^x(sinx+cosx)dx