Home
Class 12
MATHS
If x^n=t, Show that 1/xdx=1/(nt)dt and h...

If `x^n=t`, Show that `1/xdx=1/(nt)dt` and hence evaluate `intdx/(x(x^n+1))`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

If e^x=t , show that dx=1/tdt and hence evaluate intdx/(1-e^x) .

Evaluate intdx/((x+1)(sqrtx^2-1)) .

Evaluate int x^2tan^-1xdx

Evaluate intdx/((1+x^2)(1-sqrtx^2)) .

Find int (xdx)/((x-1)(x-2))

Integrate the follwing functions: 1/(x(x^n+1))

Show that x^n-1 is divisible by x-1

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

The first three terms in the expansion of (1+ax)^(n)(n ne 0) are 1,6x, and 16x^(2) . Then find the value of a and n.

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is