Home
Class 12
MATHS
If e^x=t, show that dx=1/tdt and hence e...

If `e^x=t`, show that `dx=1/tdt` and hence evaluate `intdx/(1-e^x)`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

If x^n=t , Show that 1/xdx=1/(nt)dt and hence evaluate intdx/(x(x^n+1)) .

Evaluate int( d x)/(e^x-1)

Evaluate int(1)/(1+e^(-x))dx .

Evaluate int_0^1e^(-5x)dx .

Evaluate int(e^x+e^-x)^2 dx

Evaluate int_0^1 x^2 e^x d x

If e^y(x+1)=1 . Show that dy/dx=-e^y

Evaluate intdx/((x+1)(sqrtx^2-1)) .

Evaluate intdx/((1+x^2)(1-sqrtx^2)) .

Evaluate int(e^(2x)-1)/(e^(2x)+1)dx .