Home
Class 12
MATHS
Find int0^(pi//4)log(1+tanx)dx using the...

Find `int_0^(pi//4)log(1+tanx)dx` using the property `int_0^af(x)dx=int_0^af(a-x)dx`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2) log(tanx)dx

Evaluate. int_0^(pi/4) log(1+tanx)dx

Let f(x) be a function,then int_0^af(x)dx =?

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

int_(0)^(pi//2) log((cos x)/(sin x)) dx is equal to

int_0^af(a-x)dx =..... a) int_0^(2a)f(x)dx b) int_-a^af(x)dx c) int_0^af(x)dx d) int_a^0f(x)dx

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

Evaluate int_0^1e^(-5x)dx .

If f(x) is an odd function,then int_-a^af(x)=?