Home
Class 12
MATHS
Prove that int0^(pi//2)sin^2x/(sinx+cosx...

Prove that `int_0^(pi//2)sin^2x/(sinx+cosx)dx=int_0^(pi//2)(cos^2x)/(sinx+cosx)dx`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi//2)sin^2x/(sinx+cosx)dx .

int_0^(pi/2)frac(sinx)(sinx+cosx)dx

Find the value of int_0^(pi/2)sin^4x/(sin^4x+cos^4x)dx

Evaluate int_0^(pi/2) sin ^7 x d x

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Prove that int_0^pi x/(a^2cos^2x+b^2sin^2x)dx=pi^2/(2ab)

Prove that (sin3x+sinx)sinx+(cos3x-cosx)cosx=0

int_(-pi//2)^(pi//2)sin^(2)xcos^(2)x(sinx+cosx)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx