Home
Class 12
MATHS
Consider the integral I=int(xe^x)/(1+x)^...

Consider the integral `I=int(xe^x)/(1+x)^2dx` Express the integral I in the form of `inte^x{f(x)+f'(x)}dx`.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

Consider the integral I=int(xe^x)/(1+x)^2dx What is the value of I

Consider the integral I= intfrac(xsin^-1x)(sqrt(1-x^2))dx Evaluate I.

Consider the integral I=int_0^pi(xsinx)/(1+cos^2x)dx Show that I=pi^2/4

Find the following integrals int (x^3-1)/x^2 dx

Integrate int(x+2)/(2x^2+6x+5)dx

Consider the integral I=int_0^pi(xsinx)/(1+cos^2x)dx Express I=pi/2int_0^pisinx/(1+cos^2x)dx

Find the following integrals. int_0^1xe^(x^2)dx

Find the following integrals int 1/x^n dx

Integrate int sqrt(x^2-8x+7) dx