Home
Class 12
MATHS
If intf(x)dx=logabs(tanx)+C. Find f(x)...

If `intf(x)dx=logabs(tanx)+C`. Find `f(x)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

intfracf(x)(tanx)dx=logabstanx+c , then f(x) is

If intf(x)/(x^2+1)dx=logabs(x^2+1)+C , then f(x) =……………..

If intf(x)dx=g(x) , then intf^(-1)(x)dx is equal to a) g^(-1)(x) b) xf^(-1)(x)-g(f^(-1)(x)) c) xf^(-1)(x)-g^(-1)(x) d) f^(-1)(x)

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

If intg(x)dx=g(x) , then intg(x){f(x)+f'(x)}dx is equal to

If intxf(x)dx=(f(x))/2 , then f(x) is equal to :

If f(x)=(log_(e)(1+x^(2)tanx))/(sinx^(3)),xne0 is to be continuous at x=0 , then f(0) must be defined as a)1 b)0 c)1/2 d)-1

If int_(-1)^(4)f(x)dx=4" and "int_(2)^(4)(3-f(x))dx=7 , then find the value of int_(2)^(-1)f(x)dx is