Home
Class 12
MATHS
int0^af(a-x)dx =..... a)int0^(2a)f(x)dx ...

`int_0^af(a-x)dx` =..... a)`int_0^(2a)f(x)dx` b)`int_-a^af(x)dx` c)`int_0^af(x)dx`
d)`int_a^0f(x)dx`

A

`int_0^(2a)f(x)dx`

B

`int_(-a)^(a)f(x)dx`

C

`int_(0)^(a)f(x)dx`

D

`int_(a)^(0)f(x)dx`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BODY BOOKS PUBLICATION|Exercise EXERCISE|97 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are continuous in [0,a] satisfying f(x)=f(a-x) and g(x)+g(a-x)=a then int_(0)^(a)f(x)g(x)dx= a) aint_(0)^(a//2)f(x)dx b) a/2int_(0)^(a)f(x)dx c) -aint_(0)^(a)f(x)dx d)None of these

If f(x) is continuous for all real values of x then sum_(r=1)^(n)int_(0)^(1)f(r-1+x)dx is equal to a) int_(0)^(n)f(x)dx b) int_(0)^(1)f(x)dx c) nint_(0)^(1)f(x)dx d) (n-1)int_(0)^(1)f(x)dx

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

Find int_0^(pi//4)log(1+tanx)dx using the property int_0^af(x)dx=int_0^af(a-x)dx .

f(x)intg(x)dx-int(f'(x)intg(x)dx)dx

If int_(0)^(a)x^(m)(a-x)^(n)dx=k then int_(0)^(a)x^(n)(a-x)^(m)dx=

If int_(0)^(a)f(2a-x)dx=muandint_(0)^(a)f(x)dx=lambda , then int_(0)^(2a)f(x)dx equals a) 2lambda-mu b) lambda+mu c) mu-lambda d) lambda-2mu

int_(0)^(1)(tan^(-1)x)/(x)dx is equal to a) int_(0)^(pi/2)(sinx)/(x)dx b) int_(0)^(pi/2)(x)/(sinx)dx c) 1/2int_(0)^(pi/2)(sinx)/(x)dx d) 1/2int_(0)^(pi/2)(x)/(sinx)dx

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=