If `veca,vecb,vecc`are coplanar,prove that `veca+vecb,vecb+vecc,vecc+veca`are coplanar.
Topper's Solved these Questions
VECTOR ALGEBRA
BODY BOOKS PUBLICATION|Exercise EXERCISE|1 Videos
THREE DIMENSIONAL GEOMETRY
BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
Similar Questions
Explore conceptually related problems
Show that if veca+vecb,vecb+vecc,vecc+veca are coplanar then veca,vecb,vecc are also coplanar.
If veca,vecb,vecc are three coplanar vectors, then [vecavecbvecc] is
Prove that [ veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]
For any three vectors veca,vecb and vecc , and, prove that (veca+vecb)+vecc=veca+(vecb+vecc) .
veca,vecb,vecc are three non zero vectors such that vecaxxvecb=vecc,vecbxxvecc=veca .Prove that veca,vecb,vecc are mutually at right angle and |vecb|=1,|vecc|=|veca| .
If veca, vecb, vecc are unit vectors then, veca.veca =_____
If veca, vecb, vecc are unit vectors such that veca+vecb+vecc=0 , find the value of veca.vecb+vecb.vecc+vecc.veca .