Show that if `veca+vecb,vecb+vecc,vecc+veca` are coplanar then `veca,vecb,vecc` are also coplanar.
Topper's Solved these Questions
VECTOR ALGEBRA
BODY BOOKS PUBLICATION|Exercise EXERCISE|1 Videos
THREE DIMENSIONAL GEOMETRY
BODY BOOKS PUBLICATION|Exercise EXERCISE|5 Videos
Similar Questions
Explore conceptually related problems
If veca,vecb,vecc are coplanar,prove that veca+vecb,vecb+vecc,vecc+veca are coplanar.
If veca,vecb,vecc are three coplanar vectors, then [vecavecbvecc] is
Show that (veca-vecb) xx(veca+vecb)=2(veca xx vecb)
veca,vecb,vecc are three non zero vectors such that vecaxxvecb=vecc,vecbxxvecc=veca .Prove that veca,vecb,vecc are mutually at right angle and |vecb|=1,|vecc|=|veca| .
Prove that [ veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]
If veca, vecb, vecc are unit vectors then, veca.veca =_____
Hence, show that veca.vecb+vecb.vecc+vecc.veca=(-3)/2 if veca+vecb+vecc=0 .
Show that the four points A, B, C and D with position vectors veca, vecb, vecc and vecd respectively are coplanar if 3 veca-2 vecb+vecc-2 vecd=0