Home
Class 11
MATHS
In a triangle ABC, Prove that asin(B-C...

In a triangle ABC, Prove that
`asin(B-C)+bsin(C-A)+csin(A-B)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that sinA=sin(B+C)

Prove that cosAsin(B-C)+cosBsin(C-A)+cosCsin(A-B)=0

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

In any triangle ABC, prove that tan((B-C)/2)=(b-c)/(b+c) cot frac (A)(2)

For any triangle ABC, prove that (a+b)/c=cos((A-B)/2)/sin(C/2)

In a /_\ABC , prove that tan((B-C)/2)=(b-c)/(b+c)cotfrac(A)(2)

In a triangle ABC, if a,b,c are the sides opposite to angles A,B,C respectively,then value of |(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA)| is a)1 b)-1 c)0 d)a cos A + b cos B + cos C