Home
Class 11
MATHS
prove that cos(pi/4+x)+cos(pi/4-x)=sqr...

prove that
`cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos ( pi/4 +x)+cos ( pi/4 - x) = sqrt(2)cos x

Prove that cos((3pi)/4+x)-cos((3pi)/4-x)= -sqrt2 sinx

cos (2pi-x) =

prove the following cos(pi/4+x)+cos(pi/4-x) = sqrt2cosx

Prove that cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that 2cos(pi/13)cos((9pi)/13)+cos((3pi)/13)+cos((5pi)/13)=0

prove that (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

The value of cos (pi// 4 + x) + cos (pi// 4 - x) is