Home
Class 11
MATHS
Prove that tan((A-B)/2)= (a-b)/(a+b)co...

Prove that
`tan((A-B)/2)= (a-b)/(a+b)cot frac(c)(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that tan((B-C)/2)=(b-c)/(b+c) cot frac (A)(2)

In a /_\ABC , prove that tan((B-C)/2)=(b-c)/(b+c)cotfrac(A)(2)

Prove that tan ^(-1) ((a-b)/(1+a b))+tan ^(-1)(( b-c)/(1+b c))+tan ^(-1) ((c-a)/(1+c a))=0

For any DeltaABC , prove that sin ((B-C)/2)=(b-c)/a cos (A/2)

tan((A+B)/(2))="cot"(C)/(2)

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

Prove that 2 tan ^(-1)[(sqrt((a-b)/(a+b))) tan ((theta)/2)]=cos ^(-1)((b+a cos theta)/(a+b cos theta))

If alphaandbeta are the two different roots of equation a costheta+bsintheta=c prove that (i) tan(alpha+beta)=(2ab)/(a^(2)-b^(2)) (ii) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

Using the above result prove that tan^-1(frac(1)(2))+tan^-1(frac(1)(3))=pi/4

Prove that 2 sin^-1(frac(3)(5))=tan^-1(frac(24)(7))