Home
Class 11
MATHS
Prove that sqrt(2+sqrt(2+sqrt(2+2 cos 8 ...

Prove that `sqrt(2+sqrt(2+sqrt(2+2 cos 8 theta)))=2 cos theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt 2+sin theta=cos theta .

Prove (2+sqrt3)(2-sqrt3)=1

Prove that (1 - cos 4theta)/(1 - cos 5theta) = [(sin (2theta))/(sin(5/2theta))]^2

Prove that cos^2theta=(1+cos2theta)/2

If cos theta+sin theta=sqrt(2) cos theta ,then show that cos theta-sin theta=sqrt(2) sin theta

Prove that y=(4 sin theta)/((2+cos theta))-theta is an increasing function of theta in [0, pi/2] .

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

Given that 1-costheta=2sin^2(theta/2) and 1+costheta=2cos^2(theta/2) prove that (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

int _(0) ^( pi //2) (cos theta )/( sqrt ( 4 - sin ^(2) theta)) d theta is equal to :

Prove that (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta