Home
Class 11
MATHS
Prove by mathematical induction. (cost...

Prove by mathematical induction.
`(costheta +i sintheta)^n=(cosntheta+isinntheta),`
where `i=sqrt(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that abs(costheta-isintheta) = 1

Express i in the form r(costheta+isintheta)

Prove by the mathematical induction that the rule of exponents (ab)^n=a^nb^n .

Prove that (1+costheta+sintheta)/(1-costheta+sintheta)=cot(theta/2)

(b)Prove by the principle of mathematical induction that 3^n>2^n.

Find dy/dx if x=a(theta-sintheta) , y=a(1-costheta)

(a)Prove by the principle of mathematical induction that log x^n=nlogx .

Find dy/dx if x=a(theta-sintheta) and y=a(1+costheta)

Given x^2=cos2theta Show that tan^-1((costheta+sintheta)/(costheta-sintheta))=pi/4+theta