Home
Class 8
MATHS
The order of the matrix [(c),(y),(x),(-x...

The order of the matrix `[(c),(y),(x),(-x),(-y),(z)]` is ______.

A

`1xx4`

B

`6xx1`

C

`1xx6`

D

`4xx1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICS

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level 1|15 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level -2|15 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (Level 3 )|8 Videos

Similar Questions

Explore conceptually related problems

Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

If the sum of the matrices [{:(x),(x),(y):}],[{:(y),(y),(z):}]and[{:(z),(0),(0):}] "is the matrix" [{:(10),(5),(5):}] , then what is the value of y ?

What is the determinant of the matrix ({:(x,y,y+z),(z,x,z+x),(y,z,x+y):}) ?

Find the values of 'x','y','z' if the matrix : A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies the equation A'A=I

If the sum the matrices [{:(x),(x),(y):}][{:(y),(y),(z):}] and [{:(z),(0),(0):}] is the matrix [{:(10),(5),(5):}] then what is the value of y ?

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x , y , zdot

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Let A be a 3xx3 matrix and S={((x),(y),(z))x,y,z, in R} Define f: S rarr S by f((x),(y),(z))=A((x),(y),(z)) Suppose f((x),(y),(z))=((0),(0),(0)) implies x=y=z=0 Then