Home
Class 14
MATHS
The height of a cone is 45cm. It is cut ...

The height of a cone is 45cm. It is cut at a height of 15cm from its base by a plane parallel to its base. If the volume of the smaller cone is `18480 cm^3`, then what is the volume (in `cm^3`) of the original cone?

A

a) 34650

B

b) 61600

C

c) 36960

D

d) 62370

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • 2017 TIER-II PAPER(8)

    CHAMPION PUBLICATION|Exercise EXERCISE|100 Videos
  • 2018 TIER-II PAPER(4)

    CHAMPION PUBLICATION|Exercise EXERCISE|100 Videos

Similar Questions

Explore conceptually related problems

The height of a cone is 40cm. A small cone is cut off at the top by a plane parallel to its base.If the volume of a small cone is (1)/(64) of the volume of the given cone,at what height above the base is the section made?

A solid right circular cone is cut into two parts at the middle of its height by a plane parallel to its base . The ratio of the volume of the smaller cone to the whole cone is

The height of cone is 30cm .A small cone is cut off at the top by a plane paralle to its base.Its volume be 1/27 of the volume of the given cone at,What height above the base is the section made.

The height of a cone is 21 cm and its slant height is 28 cm. The volume of the cone is

The height of a cone is 15cm. If its volume is 1570cm^(3) ,find the radius of the base.

The height of a cone is 7 cm and its radius of base is 3 cm. Find its volume.

The ratio of the heights of two cones of same base is 4 : 3. If the volume of small cone is 462 pi cm^(3) , then find the volume of new cone.

The volume of a cone is 18480cm^(3). If the height of the cone is 40cm.Find the radius of its base.

The height of a cone is 20 cm. A small cone is cut off from the top by a plane parallel to the base. If its volume be 1//125 of the volume of the original cone, determine at what height above the base the section is made.

CHAMPION PUBLICATION-2017 TIER-II PAPER(9)-EXERCISE
  1. The sum of radii of the two circles is 91 cm and the difference betwee...

    Text Solution

    |

  2. A right triangular prism has equilateral triangle as its base. Side of...

    Text Solution

    |

  3. The height of a cone is 45cm. It is cut at a height of 15cm from its b...

    Text Solution

    |

  4. The ratio of the curved surface area and total surface area of a right...

    Text Solution

    |

  5. The radius and height of a solid cylinder are increased by 2% each. Wh...

    Text Solution

    |

  6. A sphere of radius 21 cm is cut into 8 identical parts by 3 cuts (1 cu...

    Text Solution

    |

  7. Two identical hemispheres of maximum possible size are cut from a soli...

    Text Solution

    |

  8. Identical cubes of largest possible size are cut from a solid cuboid o...

    Text Solution

    |

  9. A regular triangular pyramid is cut by 2 planes which are parallel to ...

    Text Solution

    |

  10. What is the value of [(cos 7A +cos 5A) div (sin 7A -sin 5A)]? [(cos...

    Text Solution

    |

  11. What is the value of [1 - sin(90 -2A)|//[1 + sin (90 + 2A)]? [1 - si...

    Text Solution

    |

  12. what is the value of sin75^@ + sin 15^@ ? sin75^@ + sin 15^@ का मान ...

    Text Solution

    |

  13. What is the value of [(cos 3 theta + 2cos 5 theta+ cos 7 theta)/(cos t...

    Text Solution

    |

  14. What is the value of [2 sin (45 +theta) sin (45 -theta)]//cos 2 theta?...

    Text Solution

    |

  15. What is the value of sin (90^@ +2A)[4 - cos^2 (90^@- 2A)]? sin (90^@...

    Text Solution

    |

  16. What is the value of [cos (90+ A)div sec (270-A)]+[sin(270 + A)div cos...

    Text Solution

    |

  17. On walking 100 metres towards a building in a horizontal line, the an...

    Text Solution

    |

  18. The upper part of a tree broken over by the wind make an angle of 60^@...

    Text Solution

    |

  19. The height of a tower is, 300 meters. When its top is seen from top of...

    Text Solution

    |

  20. The given table shows the number (in percent) of employees working in ...

    Text Solution

    |