Home
Class 14
MATHS
From a circular sheet of paper of radius...

From a circular sheet of paper of radius 10cm, a sector of area 40% is removed. If the remaining part is used to make a conical surface, then the ratio of the radius and the height of the cone is-
किसी कागज की गोलाकार सीट जिसकी त्रिज्या 10 सेमी से वृत्त खंड का 40% हटा दिया जाता है, यदि शेष हिस्से का प्रयोग करके एक शंकु बनाया जाता है, तो शंकु की त्रिज्या तथा ऊँचाई का अनुपात है।

A

`3: 4`

B

`4:3`

C

`1:2`

D

`1:1`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • 2011 TIER-II PAPER(23)

    CHAMPION PUBLICATION|Exercise EXERCISE|100 Videos
  • 2013 TIER-II PAPER(20)

    CHAMPION PUBLICATION|Exercise EXERCISE|100 Videos

Similar Questions

Explore conceptually related problems

From a circular aluminium sheet of radius 14 cm, a sector of angle 45^(@) is removed. Find the percentage of the area of the sector removed.

The volume of a right circular cone is equal to that of a sphere, whose radius is half the radius of the base of the cone. What is the ratio of the radius of the base to the height of the cone ? एक लम्ब वृत्तीय शंकु का आयतन उस गोले के आयतन के बराबर है, जिसकी त्रिज्या शंकु के आधार की त्रिज्या से आधी है | शंकु के आधार की त्रिज्या और शंकु की ऊंचाई में क्या अनुपात है ?

What is the total surface area of a cone which has a radius of 21 cm and a height of 28 cm? (pi=22/7) उस शंकु का कुल पृष्ठ क्षेत्रफल ज्ञात करें जिसकी त्रिज्या 21 सेमी और ऊंचाई 28 सेमी है|

The radius a circular cone is R and its height is H. the volume of cone is: एक गोलाकार शंकु की त्रिज्या R है और इसकी ऊंचाई H है। शंकु का आयतन है

If the radius of the base of a cone is doubled, and the volume of the new cone is three times the volume of the original cone, then what will be the ratio of the height of the original cone to that of the new cone ? यदि किसी शंकु के आधार की त्रिज्या दोगुनी कर दी गयी है , और नए शंकु का आयतन आरंभिक शंकु के आयतन का तिगुना है, तो आरंभिक शंकु और नए शंकु की ऊँचाइयों के बीच क्या अनुपात होगा ?

CHAMPION PUBLICATION-2012 TIER-II PAPER(22)-EXERCISE
  1. Let A and B be two solid spheres such that the surface area of B is 30...

    Text Solution

    |

  2. The ratio of the areas of the circumcircle and the incircle of a squar...

    Text Solution

    |

  3. From a circular sheet of paper of radius 10cm, a sector of area 40% is...

    Text Solution

    |

  4. If the area of the circular shell having inner and outer radius of 8 c...

    Text Solution

    |

  5. A ditch of radius 3.5 m is dug 16 m deep. The earth removed is spread ...

    Text Solution

    |

  6. The ratio of the number of sides of two regular polygons is 1: 2. If e...

    Text Solution

    |

  7. If x= sqrt((sqrt5+1)/(sqrt5-1)), then x^(2)-x -1 is equal to

    Text Solution

    |

  8. Two posts are x meters apart and the height of one is double that of t...

    Text Solution

    |

  9. If theta is a positive acute angle and tan 2 theta .tan 3 theta = 1, t...

    Text Solution

    |

  10. If sin 17^@ = x/y,then the value of sec 17^@ - sin 73^@ is

    Text Solution

    |

  11. In a right -angled triangle XYZ right angled at Y . If XY=2sqrt(6)a...

    Text Solution

    |

  12. If 0^@ lt theta lt 90^@, then the value of sin theta + cos theta is

    Text Solution

    |

  13. An aeroplane when flying at a height of 5000 m from the ground ...

    Text Solution

    |

  14. The angles of a triangle are in Arithmetic Progression. The ratio of t...

    Text Solution

    |

  15. Suppose DeltaABC be a right-angled triangle where angleA= 90^@ and AD ...

    Text Solution

    |

  16. Two circles touch each other externally at P. AB is a direct common ta...

    Text Solution

    |

  17. The length of the common chord of two intersecting circles is 24 cm. I...

    Text Solution

    |

  18. In DeltaABC, D and E are points on AB and AC respectively such that DE...

    Text Solution

    |

  19. The area of the square inscribed in a circle of radius 8 cm is

    Text Solution

    |

  20. X and Y are centres of circles of a radii 9 cm and 2 cm respectively, ...

    Text Solution

    |