Home
Class 12
MATHS
lim(x->0)(sqrt(1+x)-(1+x)^(1/3))/x is e...

`lim_(x->0)(sqrt(1+x)-(1+x)^(1/3))/x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to

lim_(x to 0)((x)/(sqrt(1+x)-sqrt(1-x))) is equal to

lim_(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x) is equal to

lim_(x rarr0)((sqrt(1+x)-1)/(x))

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

(lim_(x rarr0)(sqrt(1+x)-1)/(x) is equal to a.1b.0 c.2d.(1)/(2)

lim_(xrarr0) (sqrt(1+x)-1)/(x) is equal to

lim_(x rarr0)(sqrt(x+1)-1)/(x)