Home
Class 11
MATHS
If f(x)+f(1/(1-x))=1/x, x in R -{0,1}, i...

If `f(x)+f(1/(1-x))=1/x, x in R -{0,1},` if the value of `f(2)=p/q` (in lowest form) then `|p-q|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)+f((1)/(1-x))=(1)/(x), x in R-{0,1} , if the value of f(2) is (p)/(q) (in lowest form) then |p-q| is equal to

f(x)+f(1-(1)/(x))=1+x for x in R-{0,1}. Find the value of 4f(2)

f(x)=x,x in Q and f(x)=1-x,x in R-Q Then find the value of [f(1)]+|(f(e))]|

let f(x)=5 , -oo 1) f(g(x))=5 then find the value of 2p+q

Let f : R-{1} to R be defined by f(x) =(1+x)/(1-x) AA x in R -{1} then for x ne +-1, (1+f(x)^(2))/(f(x)f(x^(2))) =………….

f(x) = (x (x-p))/(q - p) + (x (x - q))/(p - q) , p ne q. What is the value of f (p) + f(q) ?

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .