Home
Class 11
MATHS
Find the argument of (1)/(1+i)...

Find the argument of `(1)/(1+i)`

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`(-pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( \frac{1}{1+i} \), we can follow these steps: ### Step 1: Rationalize the denominator To simplify \( \frac{1}{1+i} \), we multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 1-i \). \[ \frac{1}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-i}{(1+i)(1-i)} \] ### Step 2: Simplify the denominator Now, calculate the denominator using the difference of squares: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] ### Step 3: Write the simplified expression Now we can write the expression as: \[ \frac{1-i}{2} = \frac{1}{2} - \frac{i}{2} \] ### Step 4: Identify the coordinates From the expression \( \frac{1}{2} - \frac{i}{2} \), we can identify the real part \( x = \frac{1}{2} \) and the imaginary part \( y = -\frac{1}{2} \). ### Step 5: Determine the quadrant Since \( x > 0 \) and \( y < 0 \), the point \( \left( \frac{1}{2}, -\frac{1}{2} \right) \) lies in the fourth quadrant. ### Step 6: Calculate the argument The argument \( \theta \) of a complex number in the fourth quadrant can be calculated using: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Substituting the values of \( y \) and \( x \): \[ \theta = \tan^{-1}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}\right) = \tan^{-1}(-1) \] ### Step 7: Find the angle The angle \( \tan^{-1}(-1) \) corresponds to \( -\frac{\pi}{4} \) (since it is in the fourth quadrant). ### Final Answer Thus, the argument of \( \frac{1}{1+i} \) is: \[ \text{Argument} = -\frac{\pi}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

17.Find the argument of i^(i)

Find the argument s of z_(1)=5+5i,z_(2)=-4+4i,z_(3)=-3-3i and z_(4)2-2i, where i=sqrt(-1).

Find the argument of the following: (1+i)/(-sqrt(3)i)

Find the principal argument of (1+i sqrt(3))^(2)

Find the principal argument of (-2i).

Write the argument of (1+sqrt(3))(1+i)(cos theta+i sin theta)