Home
Class 11
MATHS
Find the argument of - sqrt(3) +i...

Find the argument of `- sqrt(3) +i`

A

`2`

B

`(-2pi)/(3)`

C

`(5pi)/(6)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(-\sqrt{3} + i\), we can follow these steps: ### Step 1: Identify the real and imaginary parts The complex number can be expressed as: \[ z = -\sqrt{3} + i \] Here, the real part \(a = -\sqrt{3}\) and the imaginary part \(b = 1\). ### Step 2: Calculate the modulus \(r\) The modulus \(r\) of a complex number \(z = a + bi\) is given by: \[ r = \sqrt{a^2 + b^2} \] Substituting the values: \[ r = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] ### Step 3: Find the cosine and sine values Using the definitions of cosine and sine in terms of the argument \(\theta\): \[ \cos \theta = \frac{a}{r} \quad \text{and} \quad \sin \theta = \frac{b}{r} \] Substituting the values: \[ \cos \theta = \frac{-\sqrt{3}}{2} \quad \text{and} \quad \sin \theta = \frac{1}{2} \] ### Step 4: Determine the angle \(\theta\) From the values of \(\cos \theta\) and \(\sin \theta\): - \(\cos \theta = -\frac{\sqrt{3}}{2}\) corresponds to angles in the second quadrant. - \(\sin \theta = \frac{1}{2}\) corresponds to \(30^\circ\) or \(\frac{\pi}{6}\). Since the cosine is negative and sine is positive, the angle \(\theta\) is in the second quadrant: \[ \theta = 180^\circ - 30^\circ = 150^\circ \] In radians, this is: \[ \theta = \frac{150 \times \pi}{180} = \frac{5\pi}{6} \] ### Final Answer Thus, the argument of the complex number \(-\sqrt{3} + i\) is: \[ \boxed{\frac{5\pi}{6}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the argument of i

Write the argument of -i .

17.Find the argument of i^(i)

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

The argument of (1-i sqrt(3))/(1+i sqrt(3)) is 60^(@)b.120^(@)c210^(0)d.240^(@)

Write the argument of (1+sqrt(3))(1+i)(cos theta+i sin theta)