Home
Class 11
MATHS
Determine n, if ""^(2n) C(2): ""^(n) C(2...

Determine `n,` if `""^(2n) C_(2): ""^(n) C_(2) = 12: 1`.

A

`n=7`

B

`n=3`

C

`n=5`

D

`n=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine \( n \) such that the ratio of \( \binom{2n}{2} \) to \( \binom{n}{2} \) is equal to \( 12:1 \). ### Step-by-Step Solution: 1. **Write the formula for combinations**: The formula for combinations is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] 2. **Calculate \( \binom{2n}{2} \)**: Using the formula, we have: \[ \binom{2n}{2} = \frac{(2n)!}{2!(2n-2)!} \] Simplifying this, we can express it as: \[ \binom{2n}{2} = \frac{2n(2n-1)}{2} = n(2n-1) \] 3. **Calculate \( \binom{n}{2} \)**: Similarly, we calculate: \[ \binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2} \] 4. **Set up the ratio**: According to the problem, we have: \[ \frac{\binom{2n}{2}}{\binom{n}{2}} = \frac{n(2n-1)}{\frac{n(n-1)}{2}} = \frac{2n(2n-1)}{n(n-1)} \] This should equal \( 12 \): \[ \frac{2n(2n-1)}{n(n-1)} = 12 \] 5. **Simplify the equation**: Cancel \( n \) from numerator and denominator (assuming \( n \neq 0 \)): \[ \frac{2(2n-1)}{n-1} = 12 \] 6. **Cross-multiply**: Cross-multiplying gives: \[ 2(2n-1) = 12(n-1) \] 7. **Expand both sides**: Expanding both sides results in: \[ 4n - 2 = 12n - 12 \] 8. **Rearranging the equation**: Rearranging gives: \[ 4n - 12n = -12 + 2 \] \[ -8n = -10 \] 9. **Solve for \( n \)**: Dividing both sides by -8: \[ n = \frac{10}{8} = \frac{5}{4} \] ### Final Answer: Thus, the value of \( n \) is \( \frac{5}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

Determine n if ( i )^(2n)C_(2):^(n)C_(2)=12:1 (ii) ^2nC_(3):^(n)C_(3)=11:1

(i) If ""^(2n)C_(3) : ""^(n)C_(3)= 11 : 1 , find n. (ii) If ""^(2n)C_(3) : ""^(n)C_(2) = 12 : 1 , find n.

If .^(2n)C_(3):.^(n)C_(3)=12:1 , find n.

Find 'n', if ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

Find n if ^(2n)C_2= 12,1

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .