Home
Class 11
MATHS
If y= (sin x + cos x)/( sin x- cos x), f...

If `y= (sin x + cos x)/( sin x- cos x)`, find `(dy)/(dx)`.

A

`(2)/( ( sin x- cos x)^2)`

B

`(-2)/( (sin x - cosx)^2)`

C

`(-2)/( (sinx + cos x)^2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\sin x + \cos x}{\sin x - \cos x} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = \sin x + \cos x \) and \( v = \sin x - \cos x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = \sin x + \cos x \) - \( v = \sin x - \cos x \) ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we differentiate \( u \) and \( v \): - \( \frac{du}{dx} = \cos x - \sin x \) - \( \frac{dv}{dx} = \cos x + \sin x \) ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2} \] ### Step 4: Simplify the numerator Now we simplify the numerator: 1. Expand both products: - \( (\sin x - \cos x)(\cos x - \sin x) = \sin x \cos x - \sin^2 x - \cos^2 x + \cos x \sin x = 2\sin x \cos x - (\sin^2 x + \cos^2 x) \) - Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ 2\sin x \cos x - 1 \] 2. Expand the second product: - \( (\sin x + \cos x)(\cos x + \sin x) = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + 2\sin x \cos x \) 3. Combine the results: \[ \text{Numerator} = (2\sin x \cos x - 1) - (1 + 2\sin x \cos x) = 2\sin x \cos x - 1 - 1 - 2\sin x \cos x = -2 \] ### Step 5: Write the final derivative Now substituting back into the derivative formula: \[ \frac{dy}{dx} = \frac{-2}{(\sin x - \cos x)^2} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{-2}{(\sin x - \cos x)^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(1+sin x-cos x)/(1+sin x+cos x), find (dy)/(dx)

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

" (b) y=(sin x-cos x)^((sin x-cos x)) find dy/dx

If y=(sin x+cos x)*(sin x-cos x) then find dy/dx

If y=(x sin x+cos x)(x cos x-sin x) then find (dy)/(dx)

If y=(sin x)^(x)+cos x, find (dy)/(dx)

If y=sqrt(x)sin x cos x* find (dy)/(dx)

If y=sin(cos x^(2)) , find (dy)/(dx)

If x cos y=sin(x+y), find (dy)/(dx)

If (cos x)^(y)=(sin y)^(x), find (dy)/(dx)