If x^2+y^2=7xy, then prove that log((x+y)/(3))=1/2(logx+logy).
If log((x+y)/(3))=1/2(logx+logy) , then find the values of (x)/(y)+(y)/(x).
Show that Lt_(xtooo)(x-logx)/(x+logx)=1 .
int ((e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx)))dx=
For x gt 0 , if int(logx)^(5)dx=x(A(logx)^(5)+B(logx)^(4)+C(logx)^(3)+D(logx)^(2)+E(logx)+F])+ constant then A+B+C+D+E+F =
int (dx)/(x(logx-2)(logx-3))=I+c rArr I=
If x,y,z are all positive and are the pth, qth and rth terms of a geometric progresion respectively, then the value of the determinant |(logx,p,1),(logy,q,1),(logz,r,1)|=