Home
Class 10
MATHS
1.bar23 is...

`1.bar23` is

A

a rational number

B

an irrational number

C

an integer

D

a natural number

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    BEYOND PUBLICATION|Exercise |1 Videos
  • REAL NUMBERS

    BEYOND PUBLICATION|Exercise |1 Videos
  • QUESTION PAPER

    BEYOND PUBLICATION|Exercise EXERCISE|55 Videos
  • SETS

    BEYOND PUBLICATION|Exercise EXERCISE|247 Videos

Similar Questions

Explore conceptually related problems

Periodicity of 1.(bar25) is ___

If bar(a), bar(b)&bar(c) are non-coplanar vectors and if bar(d) is such that bar(d)=1/x(bar(a)+bar(b)+bar(c)) and bar(d)=1/y(bar(b)+bar(c)+bar(d)) where x and y are non-zero real numbers, then 1/(xy)(bar(a)+bar(b)+bar(c)+bar(d))=

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k)) is

Let bar(e_1) and bar(e_2) be unit vectors making angle theta . If 1/2|bar(e_1)-bar(e_2) = sin lambda theta , then find lambda .

In the given figure bar(PQ) is a line. Ray bar(OR) is perpendicular to line bar(PQ) . bar(OS) is another ray lying between rays bar(OP) and bar(OR) . Prove that angleROS = (1)/(2) angleQOS − anglePOS

i) bar(a), bar(b), bar(c) are pairwise non zero and non collinear vectors. If bar(a)+bar(b) is collinear with bar(c) and bar(b)+bar(c) is collinear with bar(a) then find the vector bar(a)+bar(b)+bar(c) . ii) If bar(a)+bar(b)+bar(c)=alphabar(d), bar(b)+bar(c)+bar(d)=betabar(a) and bar(a), bar(b), bar(c) are non coplanar vectors, then show that bar(a)+bar(b)+bar(c)+bar(d)=bar(0) .

If bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k), bar(c)=bar(i)+bar(k) , then the unit vector in the opposite direction of bar(a)-2bar(b)+3bar(c) is

If bar(a)=bar(i)-2bar(j)+bar(k), bar(b)=4bar(i)+2bar(j)-bar(k), bar(c)=bar(i)+2bar(j)-bar(k) and bar(a)+lambdabar(b) is parallel to bar(c) then lambda=

The point of intersection of the lines bar(r)=bar(a)+t(bar(b)+bar(c)), bar(r)=bar(b)+s(bar(c)+bar(a)) is

If bar(a)=bar(i)+2bar(j)+2bar(k) and bar(b)=3bar(i)+6bar(j)+2bar(k) then the vector in the direction of bar(a) and having magnitude as abs(bar(b)) is