Home
Class 10
MATHS
Mean of n-observations x1,x2,…………….,xn r...

Mean of n-observations `x_1,x_2`,…………….,`x_n` repeated `f_1, f_2, f_3`…………….`f_n` times if……….

A

`frac(overset(n)underset(i = 1)Sigma f_i x_i)(overset(n)underset(i =1)Sigma f_i)`

B

`frac (f_ix_i)(x_i)`

C

`frac(f_i)[overset(n)underset(i = 1)Sigma f_i]`

D

None

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    BEYOND PUBLICATION|Exercise EXERCISE|141 Videos
  • SIMILAR TRIANGLES

    BEYOND PUBLICATION|Exercise EXERCISE|143 Videos
  • TANGENTS AND SECANTS TO CIRCLE

    BEYOND PUBLICATION|Exercise EXERCISE|157 Videos

Similar Questions

Explore conceptually related problems

Let f : N to R be a function satisfying the following conditions: f(1) =1 and f(1) +2f( 2)+ 3 f(3) + ………n f(n )" " f(n ) = n (n+1) , f(n) "for " n ge 2 f(1) , f(2) , f(3) , f(4) ,…………. represent a series of

Let f : N to R be a function satisfying the following conditions: f(1) =1 and f(1) +2f( 2)+ 3 f(3) + ………n f(n )" " f(n ) = n (n+1) , f(n) "for " n ge 2 The value of f(1003) is (1)/(K) . Where K equals

Let f : N to R be a function satisfying the following conditions: f(1) =1 and f(1) +2f( 2)+ 3 f(3) + ………n f(n )" " f(n ) = n (n+1) , f(n) "for " n ge 2 The value of f(999) is (1)/(K) where K equals

"I : If f(x) = cosh x + sinh x then "f(x_1 + x_2 "+...+" x_a)= f(x_1)*f(x_2)*** f(x_n) "II : If f(x) = cosh x + sinh x then "f(x_1) + f(x_2) "+...+"f(x_n) = f(x_1)* f(x_2) ***f(x_n)

If composite function f_(1)(f_(2)(f_(3)(...((f_(n))))n times is an increasing function and if r of f_(1) s are decreasing function while rest are increasing , then the maximum value of r(n-r) is

Let F(x) = f(x) +g(x) , G(x) = f(x) - g( x) and H(x) =(f( x))/( g(x)) where f(x) = 1- 2 sin ^(2) x and g(x) =cos (2x) AA f: R to [-1,1] and g, R to [-1,1] Now answer the following If the solution of F(x) -G (x) =0 are x_1,x_2, x_3 --------- x_n Where x in [0,5 pi] then

Let f: R rarr R be defined by f(x)=|x-2n| if x in [2 n -1, 2n+1], (n in Z) . Then show that for any positive integer n, int_(0)^(2n) f(x)dx=n . Hint : f in continuous and periodic with period 2.