Home
Class 10
MATHS
If a + b = sqrt5 and a - b = sqrt3, then...

If a + b = `sqrt5` and a - b = `sqrt3`, then the value of `a^2 + b^2` is

A

5

B

4

C

3

D

2

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Quadratic equation in one variable

    UNITED BOOK HOUSE|Exercise Exercise |30 Videos
  • QUESTION PAPER 2019

    UNITED BOOK HOUSE|Exercise Exercise |53 Videos

Similar Questions

Explore conceptually related problems

In triangleABC, angleA=60, b = sqrt(3)+1 and c = sqrt(3)-1 then the value of tan ((B-C)/2) is-

If (sqrt(a + 2b) + sqrt(a - 2b))/(sqrt(a + 2b) - sqrt(a - 2b)) = sqrt3 and a^(2) + b^(2) = 1 , then the find values of a and b. (b) If sqrt((x - sqrt(a^(2) - b^(2)))^(2) + y^(2)) + sqrt((x + sqrt(a^(2) - b^(2)))^(2) + y^(2)) = 2a then prove that (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1

Knowledge Check

  • If a=sqrt(3), b=2 and c=1, then the value of angle A is

    A
    `30^(@)`
    B
    `45^(@)`
    C
    `60^(@)`
    D
    `90^(@)`
  • If in triangle ABC,angle A=60^@ , angle B=45^@ and a=2sqrt3 units then the value of b is

    A
    a)`sqrt2units`
    B
    b)`2sqrt2` units
    C
    c)2 units
    D
    d)`1/sqrt2` units
  • If x=(sqrt5+sqrt3)/(sqrt5-sqrt3) then the value of x^2-8x+8 is

    A
    -10
    B
    0
    C
    7
    D
    15
  • Similar Questions

    Explore conceptually related problems

    If a (2 + sqrt3) = b ( 2-sqrt3) =1 then find the value of 1/(a^(2) +1) + 1/(b^2 +1)

    If a = (sqrt5 +1 )/( sqrt5 -1) and b = (sqrt5 -1)/(sqrt5 +1) the find the value of (5a^(2) -3ab + 5b^(2)) (b) If x = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) and y = (sqrt3 -sqrt2)/(sqrt3 + sqrt2) then find the value of (3x^(2) -5xy + 3y^(2)) (c) If x = sqrt3 + sqrt2 and y = sqrt3 -sqrt2 then find the value of (x^(3) + y^(3)) and (x^(3) - y^(3))

    If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))

    If a = (sqrt5 +1)/(sqrt5-1) and b = (sqrt5-1)/(sqrt5+1) then find the value of (5a^(2) -3ab +5b^(2))

    If log_(sqrt8) b = 3 1/3 , then find the value of b.