Home
Class 12
MATHS
By using properties of determinats. Prov...

By using properties of determinats. Prove that-
`|(1,1+x,1+x+y),(2,3+2x, 1+3x+2y),(3,6+3x, 1+6x+3y):|= 1`

Promotional Banner

Topper's Solved these Questions

  • HIGHER SECONDARY QUESTION 2019

    UNITED BOOK HOUSE|Exercise EXERCISE|40 Videos
  • MODEL QUESTION PAPER SET 10

    UNITED BOOK HOUSE|Exercise EXERCISE|28 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants porve that, |{:(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3):}|=(1+pxyz)(x-y)(y-z)(z-x)

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

If y=x^3log""1/x , Prove that , xy_2-2y_1+3x^2=0 .

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

Find the derivatives w.r.t. x : y=(1-x)(1-2x)(1-3x^(2))

A triangle has vertices A_i(x_i , y_i)fori=1,2,3 If the orthocentre of triangle is (0,0), then prove that |x_2-x_3 y_2-y_3 y_1(y_2-y_3)+x_1(x_2-x_3) x_3-x_1y_2-y_3y_2(y_3-y_1)+x_1(x_3-x_1) x_1-x_2y_2-y_3y_3(y_1-y_2)+x_1(x_1-x_2)|=0

If x,y,z are different and Delta = {:|( x,x^(2) , 1+x^(3)),( y,y^(3) ,1+y^(3)),( z,z^(3) ,1+z^(3)) |:} then value of delta?

If cottheta+tantheta=x and sectheta-costheta=y , prove that (x^2y)^(2/3)-(x y^2)^(2/3)=1

If x_1, x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. with the same common ratio, then the points (x_1 , y_1),(x_2 , y_2) and (x_3 , y_3)

UNITED BOOK HOUSE-MISCELLANEOUS EXERCISE-EXERCISE
  1. If phi = tan^-1 (xsqrt3)/(2k-x) and theta (2x-k)/(ksqrt3), then show t...

    Text Solution

    |

  2. By using properties of determinats. Prove that- |(x+4,2x,2x),(2x,x+4...

    Text Solution

    |

  3. By using properties of determinats. Prove that- |(1,1+x,1+x+y),(2,3+...

    Text Solution

    |

  4. By using properties of determinats. Prove that- |(sintheta,costheta,...

    Text Solution

    |

  5. Let X = [(3,2,5),(4,1,3),(0,6,-7):}] express X as sum of two matrics s...

    Text Solution

    |

  6. If [(2,-1),(1,0),(-3,4):}]xxP= [(-1,-8,-10),(1,-2,-5),(9,22,15):}], fi...

    Text Solution

    |

  7. Prove that: underset(xrarrinfty)lim sqrtx (sqrt(x+3) - sqrtx)= 3/2

    Text Solution

    |

  8. Prove that:underset(x rarr0)lim ((x-1+cosx)/(x))^(1/x) = e^(-1/2)

    Text Solution

    |

  9. Prove that: underset(xrarrinfty)lim ((x+5)/(x+1))^x = e^4

    Text Solution

    |

  10. Prove that: underset(xrarrpi/2)lim (1+cosx)^(3secx) = e^3

    Text Solution

    |

  11. Prove that: underset(xrarr0)lim ([1+3x]^((x+3)/x))= e^9

    Text Solution

    |

  12. Evaluate the following limits: underset(x rarr0)lim(xe^x - log(x+1))/(...

    Text Solution

    |

  13. Evaluate the following limits: underset(x rarr0)lim[tan(pi/4+x)]^(1/x)

    Text Solution

    |

  14. Evaluate the following limits: underset(x rarr0)lim(sinx + cos x)^(1/x...

    Text Solution

    |

  15. Evaluate the following limits: underset(x rarr0)limsinlog(1+x)/log(sin...

    Text Solution

    |

  16. It g(x) is the inverse of f(x) and f(X) = (1+x^3)^-1, show that g'(x) ...

    Text Solution

    |

  17. Find the differential coefficients of the folloiwng functions: x^x

    Text Solution

    |

  18. Find form 1st principle the differential coefficients of the folloiwng...

    Text Solution

    |

  19. Find form 1st principle the differential coefficients of the folloiwng...

    Text Solution

    |

  20. Find dy/dx when x^(siny) + y ^(sinx) = 1

    Text Solution

    |