Home
Class 12
MATHS
If y= x^(y^x), prove that y1 = (ylogy(1+...

If `y= x^(y^x)`, prove that `y_1 = (ylogy(1+x logx logy)/(x log x (1-xlogy))`

Promotional Banner

Topper's Solved these Questions

  • HIGHER SECONDARY QUESTION 2019

    UNITED BOOK HOUSE|Exercise EXERCISE|40 Videos
  • MODEL QUESTION PAPER SET 10

    UNITED BOOK HOUSE|Exercise EXERCISE|28 Videos

Similar Questions

Explore conceptually related problems

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If x^y=e^(x-y) , Prove that dy/dx=logx/(1+logx)^2

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

Prove that log_(1/y)x xx log_(1/z)yxx log_(1/x)z=-1

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))