Home
Class 12
MATHS
prove that sin^(-1) cos sin^(-1)x + cos^...

prove that `sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x` = `pi /2`

Answer

Step by step text solution for prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2017

    UNITED BOOK HOUSE|Exercise EXERCISE|43 Videos
  • SET 1

    UNITED BOOK HOUSE|Exercise EXERCISE|41 Videos

Similar Questions

Explore conceptually related problems

2 sin ^(-1 ) x= cos ^(-1) x

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Solve: sin^(-1) cos(sin^(-1)x) = pi/3 .

sin ^(-1)cos sin^(-1)""x=(pi)/(3)

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

tan (sin ^(-1)x+sin ^(-1) y) +tan (cos^(-1)x+cos ^(-1)y)

Solve: sin^(-1)x-cos^(-1)x = pi/6

Solve : sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

If alpha=sin^(-1)(cos(sin^(-1)x))a n dbeta=cos^(-1)("sin"(cos^(-1)x)), then find tanalphadottanbeta