Home
Class 12
MATHS
Prove that, tan^(-1) (4/3) + tan^(-1) (1...

Prove that, `tan^(-1) (4/3) + tan^(-1) (12/5) = pi - tan^(-1)(56/33)`.

Answer

Step by step text solution for Prove that, tan^(-1) (4/3) + tan^(-1) (12/5) = pi - tan^(-1)(56/33). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

prove that tan ^(-1)"" (1)/(4) + tan ^(-1) ""(2)/(9) + tan ^(-1) "" (1)/(5) + tan ^(-1) ""(1)/(8) =(pi)/(4).

tan^(-1)""(3)/(2) +tan^(-1)""(6)/(5)=pi - tan^(-1)""(27)/(8)

2 tan ^(-1) ""(1)/(2) = tan^(-1) ""(4) /(3)

prove that , 4 tan ^(-1) ""(1)/(5) -tan ^(-1 )""(1)/(70) + tan ^(-1) ""(1)/(99) = (pi)/(4) .

2 tan ^(-1) ""(1)/(5)+tan^(-1)"" (1)/(8)= tan ^(-1) ""(4)/(7)

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

tan ^(-1) "" (1)/(2) + tan ^(-1) "" (2)/(11) = tan ^(-1)""(3)/(4)

Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A) =0