Home
Class 11
MATHS
If f(n) = log log … log x (log is repeat...

If `f_(n) = log log … log x` (log is repeated n times) then `int [x f_(1)(x) f_(2)(x) … f_(n)(x)]^(-1) dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = log^nx , where log^n means log log log… (repeated n time), then x log x log^2 xlog^3 x…log^(n-1) xlog^n xdy/dx is equal to

f(x)=int x log x(log x+1)dx

If f(x) = log (x – 2) – 1/x , then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=log|2x|,x!=0 then f'(x) is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to