Home
Class 12
MATHS
If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA...

If `g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R` and `f''(x) gt 0 AA x in R` then g(x) is increasing in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=2f(2x^(3)-3x^(2))+f(6x^(2)-4x^(3)-3)AA x in R and f'(x)>0AA x in R then g(x) is increasing in the interval

Let g'(x)>0 and f'(x)<0AA x in R, then

Let g(x)=2f(x/2)+f(2-x) and f''(x)<0 , AA x in (0,2) .Then g(x) increasing in

Let f''(x) gt 0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increasing in

The function g is defined by g(x)=f(x^(2)-2x+8)+f(14+2x-x^(2)) where f(x) is twice differentiable function, f''(x)>=0 , AA x in R .The function g(x) is increasing in the interval

h(x)=3f((x^(2))/(3))+f(3-x^(2))AA x in(-3,4) where f'(x)>0AA x in(-3,4), then h(x) is

Let g(x) = x^(2) + x -1 AA x in R and (gof)(x) = 4x^(2) + 10 x + 5 AA x in R , then f(7//2) = …………

F(x)=min{x,x^(2)},AA in R then f(x) is