Home
Class 11
MATHS
The period of function 2^({x}) +sin pi x...

The period of function `2^({x}) +sin pi x+3^({x//2})+cos pi x` (where {x} denotes the fractional part of x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of function 2^({x})+sinpix+3^({x/2})+cos2pix (where {x} denotes the fractional part of (x) is 2 (b) 1 (c) 3 (d) none of these

Period of function 2^({x})+sin 2pix+3^({x//2)}+cos 2pix, (where {x} denotes fractional part of x)

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

If f(x)={x}+sin ax (where {} denotes the fractional part function) is periodic,then

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

lim_(x rarr1)({x})^((1)/(n pi x)) ,where {.} denotes the fractional part function

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .